Lowering the Bar: Deep Learning for Side Channel Analysis

Guilherme Perin, Baris Ege, Jasper van Woudenberg
December 4, 2018
Before

Signal processing → Leakage modeling → Key
After
Helping security

Implementation flaws
Vulnerabilities
Source of leakages

Fixes / Improvement

Activation paths
Secure Product
Faster certification

Metrics
Power / EM side channel analysis
Power analysis

Some crypto algorithm
Example (huge) leakage
Signal processing

Raw trace

Processed trace
Misalignment
AES-128 first round attack

Key Addition

Unknown

Known

Leakage model,
Power prediction
Points of interest selection

Correlation, T-test, Difference of Means

Samples showing statistical dependency between intermediate (key-related) data and power consumption.
Concept of Template Analysis

Ciphertext Keys → Open Sample → Measure → Learn (Profiling) Phase → Leakage Model

Closed Sample → Fixed Key → Measure → Attack (Exploitation) Phase → Analysis
Key recovery

AES key bytes 0-15

Number of traces

Key Byte Rank

riscure
The actual process

- Setup
- Acquisition
- Analysis
- Processing
Deep learning background
Deep Learning

Data with labels

cat

dog

cat

dog

cat

dog

cat

dog
Deep Learning

Data with labels

Train a machine to classify these data

Machine

Error function

BACK-PROPAGATION ALGORITHM

Cat (%)

Dog (%)

Train a machine to classify these data.
Deep Learning

Data with labels

Train a machine to classify these data

Test the machine on new data

Trained machine

Cat (%) Dog (%)
Deep Learning

- **Data with labels**
- **Train a machine to classify these data**
- **Test the machine on new data**
- **Is classification accuracy good enough?**
 - **No**
 - **Change parameters**
 - **Yes**
 - **We are done!**
- **Trained machine**
- **Machine = Deep Neural Network**
- **Cat**
Convolutional Neural Networks (CNNs)

Input Layer
(the size is equivalent to the number of samples)

Conv. Layers
(feature extractor + encoding)

Output Layer
(the size is equivalent to the number of classes)

Dense Layers
(classifiers)

The **convolutional layers** are able to detect the features independently of their positions.
Creating training/test/validation data sets

- Features
- Label
- HW = 5
- HW = 7
- HW = 3
- HW = 4

Leakage model
Classification

Trained Model

Trace (samples)

Key enumeration using output probabilities (Bayes)

Softmax ($\sum p_i = 1$)

- HW = 4: 0.05
- HW = 5: 0.15
- HW = 6: 0.65
- HW = 7: 0.08

Bayes

- p_i probabilities
- 0.65
- 0.15
- 0.05
- 0.08
- 0.01
- 0.02
- 0.02
- 0.02
- 0.01

Trained Model

- Softmax
- $\sum p_i = 1$
Deep learning on side channels in practice
Step 1: Define initial hyper-parameters
Step 2: Make sure it’s capable of learning

- Increase the number of training traces and observe the training and validation accuracy
- Overfitting too fast?
 - Training accuracy: 100% | Validation accuracy: low
 - Neural network is too big for the number of traces and samples
Step 3: Make it generalize

Make sure the training accuracy/recall is increasing

Validation recall stays above the minimum threshold value = model is generalizing

0.111 = 1/9 (9 is the number of classes – HW of a byte)
Step 3: Make it generalize

Regularization techniques:

- L1, L2 (penalty applied to the weights)
- Dropout
- Data Augmentation (+traces)
- Early Stopping
Step 4: Key Recovery

In this analysis, we only need slightly-above coin flip accuracy!
Getting keys from the thingz!
Piñata AES-128 with misalignment
Bypassing Misalignment with CNNs

Neural Network: Input Layer > ConvLayer > 36 > 36 > 36 > Output Layer
Training/validation/test sets: 90000/5000/5000 traces of 500 samples
Leakage Model: HW of S-Box Out (Round 1) → 9 classes

Results for key byte 0:

Use Data Augmentation as regularization technique to improve generalization
Breaking protected ECC on Piñata

Supervised deep learning attack:
- Curve25519, Montgomery ladder, scalar blinding
- Messy signal
- Brute-force methods for ECC are needed if test accuracy < 100%
- Need to get (almost) all bits from one trace!
Breaking protected ECC

Unsupervised/Supervised Horizontal Attack: 60% success rate
Deep learning: 90% success rate
Deep learning (+ data augmentation): 99.4% success rate
Data augmentation: 25k → 200k traces.

Input (4000) 3 Conv Layers (10 filters) 4 Dense Layers (100 Neurons) Output (2 Classes)

RELU TANH SOFTMAX
Breaking AES with First-Order Masking

- Target published in 2013 (http://www.dpacontest.org/v4/)
- 40k traces available
- AES-256 (Atmel ATMega-163 smart card)
- Countermeasure: Rotating S-box Masking (RSM)
How does DPA contest V4 masking work?

- Masking is expensive in performance and memory
- Rotating mask helps by pre-computing masked S-boxes
Second order attack on masked implementations

• We cannot predict Y_{Mj}, but we can predict Y_j
• We cannot measure Y_j, but we can measure Y_{Mj}

$YM_1 = M_{(i+1)} \oplus Y_1$
$YM_2 = M_{(i+1)} \oplus Y_2$

$YM_1 \oplus YM_2 = Y_1 \oplus Y_2$

• By measuring two S-box output leakage points (YM_1 and YM_2), and subtracting their values, we get a value that corresponds to the leakage of $Y_1 \oplus Y_2$

→ second order attack

Cost:
• Must know or guess position of YM_j leakage
• Attacking two S boxes → 2 sub keys → quadratic complexity
Breaking AES with First-Order Masking

Neural Network: Input Layer > ConvLayer > 50 > 50 > 50 > Output Layer

Training/validation/test sets: 36000/2000/2000 traces

Leakage Model: HW of S-Box Out (Round 1) → 9 classes

Results for key byte 0:

The processing of 8 traces is sufficient to recover the key.
1st cool thing

DL is up there with dozens of SCA research teams
2nd cool thing

This shouldn’t work... why?
Identifying leakage
Where is the leak?

- Correlation Analysis
- Template Analysis
- Deep Learning

Correlation

POI

Visualization Techniques

?
Visualization

Object detection in images
Visualizing what neural networks learn from input data (proposed by Keras’ creator):
- Observe effect of ‘occlusion’ (input blocking)
- Create heat maps of class activations

Feature location
Activation path (illustration)

Input Data → Conv. → Pooling → Conv. → Pooling → Feature Map → Dense Layers → Output

Feature Extraction + Dimensionality Reduction

Feature Combination + Classification

HW = 5
Our method

Input Data → Conv. → Pooling → Conv. → Pooling → Feature Map → Dense Layers → Output

Feature Extraction + Dimensionality Reduction

Feature Combination + Classification

HW = 5
Results (unprotected target)

Raw trace

T-test (first round key byte)

Our visualization method

CPA succeeds

CPA fails
Digging deeper
Leakage Assessment (White-box)

40k Traces

- HW (Masked S-Box Out)
- ID (Masked S-Box Out)
- HW (S-Box Out)
- ID (S-Box Out)
Visualize the learned features (CNN)

Validation accuracy: 0.119

Key Byte 0 rank: 16
Optimized results

Overfitting
Very small generalization

<table>
<thead>
<tr>
<th>Validation Recall</th>
<th>Training Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11987649</td>
<td>0.9889999</td>
</tr>
</tbody>
</table>

No Overfitting
Significant generalization

<table>
<thead>
<tr>
<th>Validation Recall</th>
<th>Training Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21620668</td>
<td>0.3048745</td>
</tr>
</tbody>
</table>

- Key byte 0 found (rank 1) after: **9 traces!**
- Helping DL by sample selection improves quality
Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>HW 0</th>
<th>HW 1</th>
<th>HW 2</th>
<th>HW 3</th>
<th>HW 4</th>
<th>HW 5</th>
<th>HW 6</th>
<th>HW 7</th>
<th>HW 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW 0</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HW 1</td>
<td>0</td>
<td>20</td>
<td>152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HW 2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HW 3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>36</td>
<td>152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HW 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HW 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HW 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HW 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HW 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Expected Predicted

HW 0 → HW 2, HW 4, HW6
HW 1 → HW 3, HW 5
HW 2 → HW 2, HW 4, HW6
HW 3 → HW 3, HW 5
HW 4 → HW 2, HW 4, HW6
HW 5 → HW 3, HW 5
HW 6 → HW 2, HW 4, HW6
HW 7 → HW 3, HW 5
HW 8 → HW 2, HW 4, HW6

Imperfect leakage, but good enough
Wrapping up
Thoughts on Spectre & friends

• Spectre relies on 1d measurement: time
 • Plain old statistics probably better than DL

• Speculation: DL could be useful for an attacker that combines multiple micro-architectural side channels
Key takeaways

• If SCA is a concern, DL can exploit and identify leakage
• DL does SCA art + science and scales
• DL still requires humans, the bar is low, not yet at 0
• More automation needed to put a dent in insecurity
I want to learn more!

Deeplearningbook.org riscure.com/training bookstores nostarch
References

- http://www.deeplearningbook.org/
- S. Haykin, “Neural Networks and Learning Machines”.